Telegram Group & Telegram Channel
Preparing for a SQL interview?

Focus on mastering these essential topics:

1. Joins: Get comfortable with inner, left, right, and outer joins.
Knowing when to use what kind of join is important!

2. Window Functions: Understand when to use
ROW_NUMBER, RANK(), DENSE_RANK(), LAG, and LEAD for complex analytical queries.

3. Query Execution Order: Know the sequence from FROM to
ORDER BY. This is crucial for writing efficient, error-free queries.

4. Common Table Expressions (CTEs): Use CTEs to simplify and structure complex queries for better readability.

5. Aggregations & Window Functions: Combine aggregate functions with window functions for in-depth data analysis.

6. Subqueries: Learn how to use subqueries effectively within main SQL statements for complex data manipulations.

7. Handling NULLs: Be adept at managing NULL values to ensure accurate data processing and avoid potential pitfalls.

8. Indexing: Understand how proper indexing can significantly boost query performance.

9. GROUP BY & HAVING: Master grouping data and filtering groups with HAVING to refine your query results.

10. String Manipulation Functions: Get familiar with string functions like CONCAT, SUBSTRING, and REPLACE to handle text data efficiently.

11. Set Operations: Know how to use UNION, INTERSECT, and EXCEPT to combine or compare result sets.

12. Optimizing Queries: Learn techniques to optimize your queries for performance, especially with large datasets.

If we master/ Practice in these topics we can track any SQL interviews..

Like this post if you need more 👍❤️

Hope it helps :)



tg-me.com/pythonanalyst/970
Create:
Last Update:

Preparing for a SQL interview?

Focus on mastering these essential topics:

1. Joins: Get comfortable with inner, left, right, and outer joins.
Knowing when to use what kind of join is important!

2. Window Functions: Understand when to use
ROW_NUMBER, RANK(), DENSE_RANK(), LAG, and LEAD for complex analytical queries.

3. Query Execution Order: Know the sequence from FROM to
ORDER BY. This is crucial for writing efficient, error-free queries.

4. Common Table Expressions (CTEs): Use CTEs to simplify and structure complex queries for better readability.

5. Aggregations & Window Functions: Combine aggregate functions with window functions for in-depth data analysis.

6. Subqueries: Learn how to use subqueries effectively within main SQL statements for complex data manipulations.

7. Handling NULLs: Be adept at managing NULL values to ensure accurate data processing and avoid potential pitfalls.

8. Indexing: Understand how proper indexing can significantly boost query performance.

9. GROUP BY & HAVING: Master grouping data and filtering groups with HAVING to refine your query results.

10. String Manipulation Functions: Get familiar with string functions like CONCAT, SUBSTRING, and REPLACE to handle text data efficiently.

11. Set Operations: Know how to use UNION, INTERSECT, and EXCEPT to combine or compare result sets.

12. Optimizing Queries: Learn techniques to optimize your queries for performance, especially with large datasets.

If we master/ Practice in these topics we can track any SQL interviews..

Like this post if you need more 👍❤️

Hope it helps :)

BY Python for Data Analysts


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/pythonanalyst/970

View MORE
Open in Telegram


Python for Data Analysts Telegram | DID YOU KNOW?

Date: |

Telegram has exploded as a hub for cybercriminals looking to buy, sell and share stolen data and hacking tools, new research shows, as the messaging app emerges as an alternative to the dark web.An investigation by cyber intelligence group Cyberint, together with the Financial Times, found a ballooning network of hackers sharing data leaks on the popular messaging platform, sometimes in channels with tens of thousands of subscribers, lured by its ease of use and light-touch moderation.

Spiking bond yields driving sharp losses in tech stocks

A spike in interest rates since the start of the year has accelerated a rotation out of high-growth technology stocks and into value stocks poised to benefit from a reopening of the economy. The Nasdaq has fallen more than 10% over the past month as the Dow has soared to record highs, with a spike in the 10-year US Treasury yield acting as the main catalyst. It recently surged to a cycle high of more than 1.60% after starting the year below 1%. But according to Jim Paulsen, the Leuthold Group's chief investment strategist, rising interest rates do not represent a long-term threat to the stock market. Paulsen expects the 10-year yield to cross 2% by the end of the year. A spike in interest rates and its impact on the stock market depends on the economic backdrop, according to Paulsen. Rising interest rates amid a strengthening economy "may prove no challenge at all for stocks," Paulsen said.

Python for Data Analysts from no


Telegram Python for Data Analysts
FROM USA